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A survey of methods for imposition of radiation boundary conditions in numerical schemes 
is presented. Combinations of absorbing boundary conditions with damping (in particular, 
sponge filters) and with wave-speed modification are shown to offer significant improvements 
over earlier methods. 

1. INTRODUCTION 

Radiation boundary conditions appear in a wide variety of physical problems 
involving wave propagation [ 1,2]. For these problems, boundary conditions should 
be specified for dynamical quantities propagating on characteristics entering the 
domain of integration, while no boundary conditions are necessary for quantities 
propagating on characteristics leaving the domain. If the domain of integration is 
finite, numerical solutions of such a problem may be effected by standard techniques, 
such as the finite difference method. On the other hand, if the desired region of 
integration is infinite, numerical solution encounters difficulties because of the 
necessary limitation of the computational domain to a finite region. 

With initial-value or radiation problems, the appropriate boundary conditions at 
infinity are radiation boundary conditions; that is, the amplitude of waves entering 
from infinity is required to be zero, while no conditions are placed on outgoing waves 
propagating to infinity. With scattering problems, the amplitude of an incoming wave 
from infinity is specified and the amplitudes of the scattered outgoing waves 
emanating from the physical domain are sought; scattering problems can be easily 
reformulated as radiation problems. In this paper we discuss the approximation of 
wave propagation problems in infinite regions by finite discrete problems. 

A prototype radiation problem is given by the n-dimensional wave equation 

Utt = v=u + f (1.1) 
115 

0021.9991/81/050115-21$02.00/O 
Copyright G 1981 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 



116 ISRAELI AND ORSZAG 

in whichf(x, t) has compact support in x and the boundary conditions are that there 
be no incoming waves from co. In one dimension, the general solution to (1.1) in 
regions where f = 0 has the form 

u(x, t) = F(x - t) + G(x + t). (1.2) 

Iff = 0 for 1x1 > X > 0, then the radiation condition is simply that 

G=O (x>Kh 

F=O (x < -X). 
(1.3) 

It is easy to formulate suitable boundary conditions on a finite domain to simulate 
the radiation boundary conditions (1.3) for the one-dimensional wave equation. The 
boundary conditions 

du au ;i;*z=o (x = *X) (1.4) 

for all t preclude the reflection of waves from x = *X, respectively. Boundary 
conditions like (1.4) to simulate (1.3) will be called absorbing boundary conditions to 
distinguish them from the exact radiation boundary conditions (1.3) which hold 
asymptotically as X -+ co. 

The formulation of suitable absorbing boundary conditions in more than one space 
dimension is more difficult. In three dimensions, the analog of (1.4) is, in spherical 
coordinates, 

$ (ru) + p (ru) = 0 (r = R), (1.5) 

but this boundary condition is exact only for spherically symmetric waves, which are 
characterized by the property that they are incident normal to the boundary r = R. 
Waves that are not spherically symmetric may still be outgoing, but they only satisfy 
(1.5) asymptotically as R + co, giving an error (reflected waves), due to the finite 
boundary, that decays only like l/R2 as R -P 00. 

For other problems, even the formulation of leading order absorbing boundary 
conditions may not be immediately obvious. For example, consider the radiation 
condition for the Schriidinger equation 

au a224 
at = i 2 + f(x, t). 

The solution is 

(l-6) 

. 00 
u(x, t) = t( do c+‘%-“~ 

! 
ao dyf(y, w) ~fi’~-~ dy, (1.7) 

-02 -lx 
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where f(y, w  
&= -i 

= (1/27r) lgf(y, t) e-‘“‘dt and fi is positive for w  > 0 and 
1 o( for LU < 0. The radiation condition is imposed through the choice of 

sign of / w. As x + +co, only waves of the form exp(ikx - ik*t) with k > 0 persist, 
while as x + -co, only waves of the form exp(ikx - ik*t) with k < 0 persist. The 
proper analog of (1.4) or (1.5) is not clear, at least to us. 

Several methods for imposition of radiation boundary conditions may be 
considered. One possibility is to map the infinite spatial domain of the radiation 
problem onto a finite domain and solve the resulting transformed problem on the 
finite domain. It has been shown [3] that mapping by itself is doomed to fail for 
radiation problems in which the desired solution oscillates to 03. However, the 
mapping technique can be useful if the fast variation of the solution is factored off 
and only the non-oscillatory corrections are sought. In some problems, the latter 
approach may be viable but in many cases not even the oscillatory behavior of the 
solution can be determined without resort to numerical methods. Mapping will not be 
discussed further here. 

In Section 2 we survey the use of absorbing boundary conditions to impose 
radiation boundary kconditions. In Section 3, the use of global dampling to achieve 
radiation boundary conditions is investigated, and then, in Section 4, the use of 
damping (sponge) layers is studied. In Section 4, the use of damping (sponge) layers 
is studied. In Section 5, we combine the methods of Sections 224 to obtain improved 
results. In Section 6, we introduce “sponge filters” that further improve the methods 
developed earlier. Finally, some representative time-dependent calculations are 
presented in Section 7. 

2. ABSORBING BOUNDARY CONDITIONS 

In one space dimension, the absorbing boundary conditions (1.4) give radiation 
boundary conditions for the wave equation (1.1). In two space dimensions, the 
formulation of suitable absorbing boundary conditions is more involved [4-lo]. 

Consider the solution to (1.1) in two dimensions with radiation boundary 
conditions. In order to find absorbing boundary conditions that are to be applied at a 
point x=X, where f = 0, (1.1) is rewritten as 

(ilk- 1 * L2 u=o, 

where 

The two-dimensional analog of the absorbing boundary condition (1.4) is 

(2.2) 

( 1 -$+L u=o at x=X. 
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Here L is one of the “square roots” (in the sense of pseudodifferential operators [6]) 
of the operator L*. 

Approximations to L are obtained by expansion in powers of the transverse 
wavenumber (a long-wave expansion). For plane waves of the form U(X, y, t) = 
~(x)e~~‘+“~, it follows that 

L2u = (12 - w’)u. (2.4) 

The long-wave expansion of L is obtained by expanding dm in powers of Z/o: 

L = +iwdm 

= fi(o - 1*/2co) + O(Z4). 
(2.5 1 

Identifying io with a/at and il with ~Y/ay in (2.4) gives the first-order absorbing 
boundary condition [4-61 

at x=X > 0, (2.6) 

where an additional time derivative of (2.3) has been taken. 
Higher-order absorbing boundary conditions can be similarly obtained. For 

example, the next higher-order absorbing boundary condition for (2.1) is [6] 

UXff + Ufff + f%y, - hyy = 0 at x=X> 0. (2.7) 

There are several problems associated with absorbing boundary conditions of this 
kind. First, high-order accurate absorbing boundary conditions are quite complicated 
and may lead to difficult numerical and analytical problems [6]. 

Second, absorbing boundary conditions are accurate only for waves that are close 
to normal incidence at the boundary. The transverse long-wave expansion requires 
that the transverse wavelength be large compared to the normal wavelength. For 
(2.1), problems arise when Z* 2 w*, i.e., for long or evanescent waves in the x- 
direction. In this case, expansion (2.5) breaks down. Another example of the difficulty 
is given by the Schrodinger equations (1.6) in which long wavelenths result from low 
frequency modes. Here 

L’=-iz (2.8) 

so the absorbing boundary condition (2.3) requires an approximation to the square 
root of a/at. If it is known that the solution u consists only of waves with frequency 
near the reference frequency o0 then L may be approximated by 

L= J(-i&w”) +w, 

(2.9) 
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in the radiation condition (2.3). On the other hand, if the solution is broadband 
including long waves, this approach is bootless. 

Third, absorbing boundary conditions are not robust. Since they are applied only 
at the boundary, any deviation from ideal conditions there will cause reflections that 
propagate into the computational domain and cannot be easily controlled. 

In the remainder of tis paper, we use (2.1) as a model to test various ways to 
impose radiation boundary conditions. Here L2 can have various forms; Fourier 
analysis of u in time and all directions except x (normal to the artificial boundary) 
shows that we can consider L* to be a scalar in our model tests. Although the model 
reduces to an ordinary differential equation it has nontrivial interpretations and 
consequences to be discussed later. 

3. WAVE DAMPING 

An intuitively attractive method for imposition of radiation boundary conditions 
may be based on Sommerfeld’s method for analytical solution of radiation problems 
[ 1, 21. Sommerfeld argued that if a radiation problem is modified slightly by the 
imposition of a small damping term then the desired radiation boundary conditions 
will be achieved by solving the problem subject only to boundedness conditions at co 
upon taking the limit of zero damping. For example, we could modify the 
Schrlidinger equation (1.6) by adding a “viscous” dissipation term VU,, as in 

au/at = (i + VJU,, + j-(x, t) (3.1) 

for some v > 0. Then solution (1.7) is still valid with fi replaced by dm In 
order that the resulting solution be bounded at co, the branch of the square root must 
be chosen so that 

Es+;fy f 

dm- + \/s3 for w  > 0 as v--t 0+ and 
or o < 0 as v + O+, reestablishing the radiation boundary 

This procedure of adding a small dissipative term allows the simulation of 
radiation problems in finite regions. Unfortunately the simplest implementation of 
this procedure, as embodied in Sommerfeld’s original prescription, suffers from two 
important practical defects. First, in steady state radiation problems, dissipation may, 
if not properly implemented, be ineffective in damping incoming waves, leading to 
excessive spatial resolution and computational requirements. Second, in time- 
dependent radiation problems, improper application of dissipation may lead to 
“ringing” modes that persist for long times and lead to improper representation of 
transient effects. Both these defects are illustrated by application of damping to the 
one-dimensional wave equation 

utt = uxx* (3.2) 
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Let us consider the radiation problem for (3.2) on the semi-infinite interval 
0 ,< x < co with the boundary condition 

~(0, t) = a cos kt; (3.3) 

An exact solution of this radiation problem is the steady oscillation u(x, t) = 
a cos k(t - x). 

An easy way to impose damping on (3.2) is first to rewrite it as the system 

u, = wx, wt=ux, 

where u = u(, w  = u,. A suitable damped system is 

where for later convenience we allow ,u(x) > 0 and V(X) > 0 to depend on x. Here P(X) 
is a linear viscous damping coefficient while v(x) is a linear “Newtonian cooling” or 
“friction” coefficient. Let us consider the solution to (3.4) on the truncated interval 
0 <x <L for some large L (to be chosen later) with the boundary conditions 

~(0, t) = sin kt, (3.5) 

u(L, t) = 0. (3.6) 

Here (3.5) follows if a = -l/k in (3.3), while (3.6) is imposed to simulate the lack of 
knowledge of absorbing boundary conditions like (1.4). 

If ,u(x) E ,D is a constant and v(x) z 0 the steady oscillatory solution to (3.4)-(3.6) 
is 

u(x, t) = Im eikf 
[ 

sin a(L - x) 
sin aL I ’ (3.7) 

where 

a = k/d-i. (3.8) 

The maximum error in this solution at x as a function of t is 

E(X) = sin a(L -X) _ ,-i/(x 
sin aL 

Several limiting cases of (3.9) are of interest: 

(i) If ,uk CK 1, ,uk’L << 1 as p + O+, then a N k - fipk2 so that 

(3.9) 

u(x, t) - sin kt 
sin k(L - x) 

sin kL ’ 
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which is the same standing wave obtained by solution of (3.4)-(3.6) with ,U = v = 0. 
In this limit, the effect of damping is negligible and radiation boundary conditions are 
not achieved. 

(ii) If ,uk > 1 as p -+ O+, then CY - (k/2p)“‘( 1 - i) so that the waves are distorted 
by the damping. If pk-‘L-* (< 1, then 

V(x,t)=exp (-(t%)“‘x) sin [kt+ if+)“*x]. 

In this case too, radiation boundary conditions are not obtained. 

(iii) If ,uk -X 1 and ,uk*L >> 1 as ,U -+ O+, then the maximum error (3.9) at x 
behaves like 

E(X) - 1 - exp(-$k*x). (3.10) 

Thus, accurate simulation of the outgoing wave can be achieved on a fixed subin- 
terval 0 < x < x0 of 0 < x <L provided ,uk*x, CK 1. The conditions of case (iii) can 
be reinterpreted as follows. First, ,uk < 1 can be rewritten pk* < k SO that the 
requirement is that the damping rate be much smaller than the wave frequency. 
Second, the condition ,uk*L >> 1 requires kL >> 1, so that the number of wavelengths 
in the computational domain is large. The latter requirement together with the 
condition x,, CK L shows that constant damping can be used to achieve radiation 
boundary conditions but at a very high computational cost. 

A more careful analysis of the maximum error than provided by (3.10) shows that 
there are two essential kinds of error in v(x), which may be termed phase error and 
damping error. Phase error is that error induced on the frequency of the outgoing 
wave by the presence of the damping, while damping error is due to both damping of 
the outgoing wave and the unwanted reflected wave. In the limit (iii), phase error is 
negligible. In order to make the error of order E in the region 0 <x <x0, it is 
necessary that 

so that the outgoing wave is only slightly damped, and that 

so the unwanted reflected wave is greatly damped. In other words, we require 

XII 2E 
-Iln(l/E)’ L * 

pk2x, - 2~. 

With E = 0.01, k = x0 = 1, it follows that we must choose L - 250, ,L - 0.02. Thus, 
99.6 % of the computational domain is wasted outside the region 0 <x <x,, of 
accuracy, hardly a satisfactory situation. This problem is even more severe in three 
space dimensions. 
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Another difficulty with simple application of damping concerns its effect on time- 
dependent problems. The long-time behavior of the general solution to (3.4~(3.6) 
with p(x) -,u is dominated by the right-most poles of the Laplace transform v^(x, p) 
of v(x, t) in the complex-p plane. The boundary contribution to fi(x, p) is of the form 

k 
fiB(XY PI = z 

sinh p(L - x)/d- 

P +k sinh pL/dG * 
(3.11) 

The poles of ti,(x, p) at p = fik give the persistent part of the solution as t-+ co, 
namely, (3.6). However, GB(x, p) [as well as Ol(x, p), that part of v^(x, p) due to initial 
conditions] has other poles at 

PL 

dEG 
,=inn (n f 0) (3.12) 

or 
p = -(,un’~’ f ,/pn47c4 - 4L2n2r2)/2L2 

N -g * in7$m2L-2 << 1). 

These transient modes decay at the rate ,un27c2/2L2. In particular, if L = 71 the most 
persistent transient persists for the time 2/,u, which may be very long. These persistent 
transients may give errors much larger and persistent than those predicted by analysis 
of the steady state oscillation (see Fig. 1). 

FIG. 1. A plot of the error v(x, t) - sin k(t -x) at x = 1 in the solution of (3.4)-(3.6) with p = 0.1, 
v = 0, k = 2, L = 20 and 0 Q f < 2000. Here u(x, 0) = ;x(L - x), u,(x, 0) = 0. Observe the long decay 
time of the transient error to its time asymptotic value 0.18 given by (3.9). This behavior is due to the 
mode (3.13) with n = 1. 
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4. SPONGE LAYERS 

Allowing the damping coefficients ,u(x) and V(X) in (3.4) to vary with x may give 
significant improvements in the results obtained by damping. For example, Aarakawa 
and Mintz [ 1 l] considered application of damping in a sponge layer x0 < x < L by 
choosing V(X) = 0 and 

(4.1) 

in order to minimize wave reflections in a general circulation model of the 
atmosphere. 

In the spatial region 0 < x <x0, where the damping coefficients p(x) and V(X) both 
vanish, the steady oscillatory solution to (2.1) with L2 = -k2 or (3.4) is, aside from a 
constant phase and amplitude shift, 

u(x, t) = Im 
1 R 

- e i/d-x) 
+ 

ik(f + xl 

l+R -i-T-Fe ’ I 
o<x<x,, (4.2) 

where R is the reflection coefficient. Note that lR 1 measures the amplitude of the 
reflected wave. With damping of the form (4.1) and the boundary condition 
v(L, t) = 0 applied, the solution to (3.4) that is continuous at x0 gives the reflection 
coefficient 

R = -e-2ikxo 
a - ik tan a(L - x,,) 

a + ik tan a(L - x0) ’ (4.3) 

where a = k/d/l + ipk. 
Some limiting cases of (4.3) are of interest: 

(i) If pk -+ co then IR 1 --f 1. The abrupt change of damping coefficient across the 
boundary of the sponge layer reflects waves as if the boundary condition 0(x,, t) = 0 
were applied. 

(ii) For any fixed k and sponge layer with x0 < L, it is possible to find discrete 
complex values of ,B such that R = 0 so there are no reflected waves. However, as 
shown by Arakawa and Mintz [ 111, slight detuning of k from these discrete 
resonances gives large reflections. This sensitivity to the wave parameters is unaccep- 
table. 

(iii) If ,uk < 1 then 

PI--e 
-ukZtL-x0) 

(4.4) 

with a correction of order ipk. Thus, if it is also true that pk’(L -x0) >> 1, small 
reflection results. Under these conditions, the propagation domain 0 <x Q x,, can be 
chosen arbtrarily long without further wave reflections. 
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In order to achieve 1% wave reflections by this method, we choose &k 5 lo-’ and 
,uk’(L -x0) 2 In 100 = 4.6. Thus, we require k(L -x,,) 2 100, so that the sponge 
layer x,, < x < L should contain at least 15 full wavelengths. This restriction severely 
limits the utility of the simple sponge layer (4.1), especially for multi-dimensional 
problems. (The methods introduced later give 1% wave reflections with less than one 
wavelength contained within the sponge layer.) 

The damping provided by v(x) (Newtonian cooling) has an advantage over that 
provided by p(x) (viscous damping). For a given choice of damping coefficients, a 
broader spectrum of waves can be damped by Newtonian cooling than by viscous 
damping. With v(x) = v and ,u(x) =,B, there are steady wave solutions of (2.4) of the 
form 

v(x) = eikr- iox, 

where 

a=k 

The damping rate is -1m a. With v = 0, 

-1m a N $uk2 (k --) 01, 

-Im a - (k/2p)“’ @-,a) 

while, with ,u = 0, 
-1m a N (fvk)“’ (k -, 01, 

-Ima-{v (k -, co). 

(4.5) 

(4.6) 

(4.7) 

For fixed ,B or v, Im a has less variation as a function of k when Newtonian cooling is 
used. Also, as v -+ co with p= 0 for fixed k, -1m a + co so large damping can be 
achieved, while if v = 0 and ,U + 00, -1m a + 0, so only weak damping results. 

An improvement in the sponge layer idea is obtained by allowing the damping 
coefftcients to be functions of x [ 121. Suppose that ,u(x) = 0 and v(x) is of the form 

v(x) = 0, o<x<x,, 
= v&h xg <x<L, 

(4.8) 

where v,,(x) is a function of x. If v,(x,) = 0 then it is possible to avoid wave 
reflections at the interface x =x0. If v,,(x) does not vary too rapidly with X, only 
small total reflections result. 

Result (4.2) for the wave amplitude in the region 0 <x <x,, is still valid for the 
damping coefficient (4.8) even though the reflection coefficient R is no longer given 
by (4.3). In general, IR ] is determined by the formula 
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In Fig. 2, we plot the reflection coefficient ]R 1 for damping functions of the form 

vo(x) = A (n + 1)(x - x,)“/(L - XJ (4.10) 

as a function of A for n = 1, 2, 3,4. Here the boundary condition v(L, t) = 0 is 
applied and k(L -x0) = 3n so that there are lf wavelengths within the sponge layer. 
When A = 0, perfect reflection, (R / = 1, results. With increasing damping coefficient 
A, the error ]R ] due to waves reflected from the boundary decreases. Note that the 
form of v,,(x) is chosen so that J”f;, v,(x)dx = A (see the WKB analysis below). 

In Figs. 3 and 4 similar plots are given for the cases k(L -x0) = 2n and 
k(L -x,,) = 71, respectively, so there are 1 and d wavelengths, respectively, lying 
within the sponge layer. Observe that the reflection coefficients are not necessarily 
monotonically decreasing with increasing A, because reflections from within the 
sponge layer become important if too much damping is applied. It is apparent that 
there is a range of damping coefficients A and exponents IZ that gives wave reflections 
of no more than a few percent so long as the sponge layer is at least one wavelength 
long. 

An asymptotic analysis of the effectiveness of sponge layers can be given using 
WKB theory [ 131. For a steady oscillation of the form 

(3.4) reduces to 
v(x, t) = Im[v(x)eik’], 

u,, + k2[ 1 - iv(x)/k]v = 0. 

The WKB solution to (4.11) satisfying v(L, t) = 0 is 

(4.11) 

u(x, t) - a [ 1 - iv(x)/k] - 1’4 sin dm dt . 
I 

(4.12) 

FIG. 2. A plot of the reflection coefficient IRI for the damping function (4.10) with n = 1, 2, 3,4 as 
a function of A. Here the reflecting boundary condition u(L, f) = 0 is applied and k(L -x0) = 37-c so 
there are 1; wavelengths in the damping region. 
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FIG. 3. Same as Fig. 2 except that k(L - x,,) = 272 so there is 1 wavelength in the damping region. 

1 1.9 
A 

FIG. 4. Same as Fig. 2 except that k(L - x,,) = x so there is i wavelength in the damping region. 

Identifying terms in (4.2) gives 

IRI=exp (2kIm~~O\/l-ivolkdr). (4.13) 

For fixed damping function V(X), the WKB result (4.13) is asymptotically exact in the 
limit k -+ co; in fact, the condition for validity of the WKB result (4.12) is that 

v’ << k2(1 + v/k)“’ 

uniformly on the interval x,, < x <L. 

(4.14) 
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FIG. 5. Comparison between the WKB result (4.13) and the exact reflection coefficient R as a 
function of A in (4.10). Here the damping function (4.10) is used with n = 1, k(L - x,,) = 3n so there are 
1; wavelengths in the damping region. 

In Fig. 5, we compare the WKB prediction (4.13) with the exact reflection coef- 
ficient lR 1 for the damping function (4.10) with n = 1, k(L -x0) = 3n as a function 
of the coefficient A in (4.10). For small A, the agreement is very good, but the WKB 
result does not exhibit the increase of JR 1 with increasing A at large A due to wave 
reflections from the sponge. As n increases in (4.10), the WKB approximation works 
better. 

Observe that as k+ 03 in (4.13) 

IRI-exp (-/IOr(r)dr) =eeA, (4.15) 

explaining the weak dependence of IR / on n observed in Figs. 2,3. 

5. SPONGE LAYERS WITH ABSORBING BOUNDARY CONDITIONS 

While it is possible to adjust the variable damping in sponge layers to minimize 
wave reflections for steady oscillations, the problem with transient behavior pointed 
out at the end of Section 3 remains. When reflecting boundary conditions like 
v(L, t) = 0 are applied, transient energy cannot be radiated from the domain but can 
only be dissipated by damping. With weak damping and reflecting boundary 
conditions, transients persist for long times. 
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A substantial improvement in both transient and steady state behavior can be 
obtained by combining damping with absorbing boundary conditions. Damping 
reduces the amplitude of the outgoing waves as well as the amplitude of those waves 
that are not absorbed at the boundary. For example, if we repeat the Laplace 
transform analysis whose result was (3.11) for the case in which the reflecting 
condition v(L, t) = 0 is replaced by the approximate absorbing boundary condition 

du, + u, = 0 

applied at x = L, the Laplace transform solution becomes 

(5.1) 

The poles of 6,(x, p) are at p = Qk and 

coth d& = -6 d-. 

As ,U -+ O+, the slowest decaying transient modes behave like 

I-6 
p--&ln- 

1+6 
(O<a< 1) 

(5.3) 

(5.4) 

so that transients decay within a finite time in the limit p + 0+ so long as 6 > 0. 
The simultaneous application of absorbing boundary conditions and damping 

should be done very carefully because of possible interference between them. The 
proper absorbing boundary condition should account for the change in propagation 
characteristics induced by the damping. For the model problem (3.4) with v(x) = v 
and ,u(x) = 0, the absorbing boundary condition is not U, + iku = 0 but rather 

u, + i d/k2 - ikv u = 0 

or, as v - O+, 

u, + iku + jvu = 0. (5.5) 

Another way to minimize interference between absorbing boundary conditions and 
the sponge layers is to choose damping coefficients v(x) that approach zero at the 
artificial boundary x = L. A further improvement on this idea, with numerical results, 
is presented in Section 6. 
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6. SPONGE FILTERS 

The sponge layer idea discussed in Sections 4 and 5 can be improved by adjusting 
the damping to the character of the waves being modelled. A hint of this idea was 
given in Section 5, where we showed that the combination of absorbing boundary 
conditions with sponge layers could remove some undesirable transients. Several 
further improvements are possible. 

First, we consider modifications of damping that selectively filter only the 
undesirable wave components. For example, the modified one-dimensional wave 
equation 

(6.1) 

selectively filters the left-going waves by the Newtonion cooling coefficient V(X) > 0, 
while right-going waves propagate undamped. With this kind of “sponge filter,” a 
relatively large damping effect on waves incoming from x = +co can be achieved 
without distorting or reflecting the outgoing waves. 

For more complicated problems, similar modifications of the damping terms can 
be made. For problem (2.1), the analog of the damping operator 

v(x) ;+g u 
( ) 

in (6.1) is 

v(x) ;fL. u, 
( ) 

where L is a square root of L* in the sense of pseudodifferential operators. Instead of 
L in (6.2), we may use any convenient low-order numerical approximation to L. This 
approach applies to a large class of dispersive wave problems. First, we isolate the 
incoming and outgoing waves. Then we determine forms of the damping terms that 
affect only incoming waves while letting outgoing waves leave the domain unscat- 
tered. 

To test these ideas, let us consider the Fourier transformed two-dimensional wave 
equation (2.1) with (2.4): 

cc ) 2+m2 u=O, (6.3) 

where m2 = o2 - Z*. A suitable model for study of sponge filters to impose radiation 
boundary conditions as x + +co is 

($$+m')u-v(x) ($+ifi)u=O, (6.4) 
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where V(X) is a suitable damping function and fi is an approximation to dm. 
[In more difficult problems, only an approximation fi to m will be available because 
m* is a differential operator so m is a pseudodifferential operator as in Section 2.1 
When fi 1: m, the outgoing wave is almost unaffected by the damping while the 
incoming wave can be highly damped. If I< w  then we expect that good approx- 
imations rii to m can be routinely obtained but if 11: o so m CK w, then approx- 
imation of m is more difficult. Numerical results are presented later in this section 
and in Section 7. 

Another way to improve the absorption of outgoing waves is to modify the 
propagation characteristics of the waves near the boundary. If we have determined an 
approximate absorbing boundary condition 

for (6.3) then reflections will be decreased if we smoothly modify (6.3) as x 
approaches the boundary into the equation 

(-$+m*)u=o, 
for which (6.5) is an exact absorbing boundary condition. 

Let us now test all these ideas for imposition of radiation boundary conditions. 
There are three methods we want to test, namely: 

(i) absorbing boundary conditions (Section 2), 

(ii) sponge filters like (6.4), 

(iii) propagation modifications like (6.6). 

A good model for these tests is the following generalization of (6.4): 

I 
a2 

ax2 + ~(x)Ci* + [ 1 - Ic(x)]m’ - v(x) [’ ‘]lu=O lrn + q a~ (6.7) 

with the boundary condition 

[ 1 g+iA u=O at x=L. 

The reflection coefficient at x = x,, is given by (4.9): 

(6.9) 

We choose m =/3fi, so /? # 1 represnts the error in the approximation F@. The 
parameter q is used to simulate how well we can tune the sponge filter in (6.7) to 
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dissipate only outgoing waves. Usually, it is reasonable to choose /I = v because the 
same approximation to the dispersion relation for outgoing waves can be used for 
both the sponge filter in (6.7) and the absorbing boundary condition in (6.8). The 
function K(X) is used to impose smoothly the propagation modification (6.6) [when 
K(X) = l] to the exact equation (6.3) [which holds when K(X) = 01. We choose 
K(x)=O, O<x<x,, and 

n 
(6.10) 

for various n, so K(XJ = 0 and K(L) = B, so B = 1 represents full adjustment of the 
propagation speed to the absorbing boundary condition. We also choose the 
Newtonian cooling function V(X) to be 

v(x) = 0 (0 < x < XII) 

= A(x - XJyL - x)(L - x,)-“-2(n + l)(n + 2) (x,<x<L) (6.11) 

so v(xJ = v(L) = 0 and s”,, v(x) dx = A. 
In Fig. 6, we plot the reflection coefficient IR 1 versus A in (6.11) for 

m(L -x,,) = 27c, B = 0, /I = 0.5, q = 0 so there is one wavelength in the damping 
region, no propagation modification, a sponge layer (but not a sponge filter) and 
m = )ti in the absorbing boundary codition. In Fig. 7, a similar plot is made with the 
only change being r7 = 0.5 so a sponge filter is used. In Fig. 8, a similar plot with 
B = 1 and q = 0.5 is given so both propagation modification and a sponge filter are 
used. 

1 

/RI f 

FIG. 6. A plot of the reflection lR 1 WA for the model problem (6.7)-(6.8) with B = 0 in (6.10), 
m = $z, q = 0 and V(X) given by (6.11) with n = 1, 2, 3,4. Here m(L - x0) = 2n so there is 1 wavelength 
within the damping region. 
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It is apparent from Figs. 6-8 that by combination of all the devices described here 
we can achieve broadband radiation characteristics that minimize wave reflections. 
Comparison of the results plotted in Figs. 7 and 8 suggest that either a sponge filter 
or propagation modification should be used (in addition to absorbing boundary 
conditions), but there is not much to be gained by their simultaneous application. 

O.S- 

FIG. 7. Same as Fig. 6 except q = 0.5 so a sponge filter is applied. For moderate to large A, the 
reflection coefficients are decreased by about a factor 2 relative to those obtained without the sponge 
filter. 

t 
t 

oolS 
1 

A 1.9 

FIG. 8. Same as Fig. 6 except q = 0.5 and B = 1 so the propagation modification (6.10) is applied. 
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7. APPLICATION TO THE KLEIN-GORDON EQUATION 

Here we test the ideas discussed above on the solution of the Klein-Gordon 
equation 

u,, = Gr - k2m2u, (7.1) 

~(0, t) = sin kt (7.2) 

with radiation boundary conditions at x = co. Aside from its intrinsic interest, this 
problem is also a model of the multi-dimensional wave equation (with transverse 
wavenumber km). As m -+ l-, the x-wavenumber decreases and the wave propagation 
direction becomes increasingly oblique. For m > 1, the waves are evanescent. 
Absorbing boundary conditions will not work well in the latter cases. 

We solve (7.1)-(7.2) using a sponge filter together with absorbing boundary 
conditions at x =X: 

W,, = Wxx - k*m*w - v(x)(w, + wx) = 0, (7.3) 

w, + w, = 0 at x=X (7.4) 

with V(X) given by (6.11) with L = X, x0 = X - 71, n = 2 [so damping is only applied 
within an interval of length rc]. The initial conditions are w  = w, = 0 for 0 <x < X 
and the boundary condition ~(0, t) = sin kt is applied for all t > 0. 

In Figs. 9 and 10, we plot the envelope of the error 1 w  - u 1 at x = X - 71 obtained 
by numerical solution of (7.3)-(7.4) as a function of time t. The envelope removes the 
rapid oscillations of the error with frequency k. The error vanishes for t < X - 71 

0.5r 

m=0.7 

FIG. 9. Envelope of errors / W(X, 1) - u(x, l)[ at x=X-x vs C. Here u(x, I) is the solution of the 
Klein-Gordon equation (7.1) with radiation boundary conditions and w(x, t) is the solution of 
(7.3)-(7.4). Here m = 0.7, k = 4, X = 50~ and V(X) is given by (6.11). 
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m=a8 

: 

5 
A 

‘0 
0 

FIG. 10. Same as Fig. 9 except m = 0.8. 

because the wave precursor travelling with speed 1 arrives at x=X- TZ when 
t =X- z In Fig. 9, the error is plotted when m = 0.7, k = 4, and X = 5071 for 
various values of A. In this case the x-wavelength 2x/k d= = 2.20 so there are 
about 1.4 wavelengths within the damping region X - 7c < x < X. Observe that as the 
damping coefficient increases from no damping to A = 4 the error decreases from 
20% to less than 1%. Finally, in Fig. 10 a similar plot is given for m = 0.8 and 
k = 4, X = 507~. In this case, there are about 1.2 wavelenghts in the damping region. 
Notice that significant errors do not arrive with the precursor but travel with a speed 
of roughly dm in the x-direction. 
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